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In this paper, we introduce the concept of ¢@-average dimension for some
subspaces of L (R") and define the corresponding Kolmogorov p-average v-width
of a set in L (R"). For the Sobolev class WL(R") in L (R") we find necessary and
sufficient conditions for this quantity to be finite and determine its asymptotic
behaviour as v —» oc. We also obtain the exact value of the average v-widths of some
classes of functions in L,(R"). " 1994 Academic Press. Inc.

1. DEFINITIONS AND FORMULATION OF THE MAIN RESULTS

1.1. Let (X, ||-]) be a normed linear space. We use the following
notation:

BX :={xe X | x| <1} is the unit ball in X,

Lin{X) is the set of all linear subspaces of X.

d(x, A, X):=inf{lx — p|| | ye A} is the distance of xc X from 4 < X,

d(C, A, X) :=supld(x, 4, X)| xe C} is the deviation of Cc X from
Ac X,

d(C, X):=inf{d(C, L, X) | Le Lin(X), dim L <n} is the Kolmogorov
n-width of Cin X (neZ, :=1{0,1,2,..}).

1.2, Let neN:={1,2, ..}, p:=(p,, . p,) 1 <p,<00, i=1,..,8
I=(a,b), —0o<a<bgow, I"=Ix--- x[, and L,(I") denote the Banach
space of measurable functions x(-) on /” with the mixed norm

PPy PuiPn- 1\ Lipa
Jlx(-)]] Lotim) = (j‘l dt, (j/ dt, (L |x(e)}™ df;) > >

(see [1]).
When p=(p, .., p), L,(I") coincides with the usual space L,(I").
For ease of writing, we denote 1 = (1, ..., 1), 2=(2, ..., 2), a» = (o0, ..., cC).
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If p=(p1s 0 pud @=(g1,-q,) 1<p; ¢,<00, i=1,.,n then p<q
(p<q) means p,<gq, (p;<q), i=1,..n

Let a >0, and P, be the continuous linear operator in L,(R") defined by
P, x(-):=X,(-)x(-), where X,(-) is the characteristic function of the cube
[—a,a]”

Set

Lin (L ,(R")) := {L e Lin(L (R") | restriction P, to L is
a compact operator for all a>0}.

Let LeLin(L,(R")) and a>0. Then P, (L~ BL_(R")) is relatively
compact and therefore the quantity

K.(a, L, L (R"))
:=min{neZ, | d(P,(LnBL(R"), L (R"))<e}
is finite for every a>0 and £> 0.

It is easily verified that the function a— K.(a, L, L,(R")) is non-
decreasing and the function ¢ — K,(a, L, L ,(R")) is nonincreasing.

Remark. Obviously we can identify P,(Ln BL_(R")) with the
restriction L N BL (R") to [ —a, a]". It is then easy to check that

K.(a, L, L(R")
=min{neZ, | d,(P,(LABL(R"), L([—aal")<e}.

Let @ denote the set of all positive nondecreasing functions ¢(-} on
(0, o) for which @(a) » c© as a - .

Dermvmion 1.1, Let Le Lin (L (R")) and ¢(-)€ @. Then the ¢-average
dimension of L in L (R") is defined as

. .. Kida L, L (R"))
dim(L, L (R"), ¢(-)) := !m}) lim inf ————2—— (L.1)

a—m pla)
If ¢(a)=(2a)" (the volume of cube [ —a,a]") then we call (1.1) the
average dimension of L in L (R") and denote it by dim(L, L (R")). In this
case (1.1) is a slight modification of the definition given by Tikhomirov

[10].

DEFINITION 1.2, Let C be a centrally symmetric subset of L (R"),
¢(-)e P, and v>0. The Kolmogorov ¢-average v-width of C in L (R") is
defined as

d(C, Ly(R"), @(-)):=inl sup inf {x(-)=p( Mg  (1.2)

L x(-)eC y()el
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where the infimum is taken over all subspaces L€ Lin (L, (R")) such that
dim(L, L (R"), ¢(-)) <v.

If p(a)=(2a)", then we call (1.2) the Kolmogorov average v-width of C
in L (R") and denote it by d,(C, L (R")).

1.3. Let S=S(R") be the space of rapidly decreasing functions on
R”, and 8" = S’(R") the dual space of tempered distributions with the usual
topologies. Denote by F: S’ — S’ and F~': §' - S’ the Fourier transform
and its inverse, respectively.
For each aeR, A,:S"— S’ denotes the operator defined by A, x:=
(1+16]*)**x, where o=(0,,.,0,), |6/°’=ci+ -+l Let I,:=
F 'aA,-Fand 1<p<a. Set

AR = {xe S(R") | (1,x)(-)€ L(R")}.

This is a Banach space with norm {[x(-)| ez@n = 1L, X)() Ly [3]-
If p=(p,..,p), then H(R") are the well-known spaces of Bessel

potentials, or Liouville spaces (see, for example, [8, 97).
When 1 <p <o and a=reN, #(R") coincides with the Sobolev space

WAR) = {x(-)e L(R") | 3"x(-)/or} € Ly(R"), j=1, .., n}

(see [37).
The set

Wi (R™) 1={X(-)€W}‘,(R") 2 llﬁ’X(-)/afj-llL,mn)<1}

J=1

we call the Sobolev class.

In the case where n =1, we have determined the asymptotic behaviour of
d,(W,(R), L(R), ¢(-)) (for some p, q) as v grows, and we have also found
the exact values of d,(W(R), L,(R)) for all | <p< oo (see [5-7]). In this
paper, we are interested in the case where n is an arbitrary positive integer.

1.4. The following assertions are the main results in this paper.

THEOREM 1.1. Let r, neN, 1<p=(py, - P)=9={(q(s - §u)<@®
or 1<p<q<2, if p#q Next, let r>30_ (p;—1/gq), @(-)ed,
and v>0. Then d (W (R"), LA(R"), o(-))<oo if and only if
liminf, | _(a"/¢(a)) < 0.

If, in addition, lim inf, , (a"/@(a)}) >0, then

r n n ~— vﬁ”‘"’ W’=Q!
d(WL(R"), Ly(R"), ¢(-)) =< {v~(l/n)(r\2;':l (Vpy = 1/a), l<p<g<2
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THEOREM 1.2. Let neN, a>0, and v=0. Then

‘2

2in - oty
d,.(Bf;(R"),Lz(R"))=<1+4n<F<§+l)v> ) ,

where ['(-) is the Euler function (and, recall, that B# 5(R") is the unit ball
in #5(R")).

2. PRELIMINARY RESULTS

Let neN, o=(0,,..0,)>0, 1<p<wow, and 4, ,(R") denote the
restriction to R” of the space of all functions of exponential type ¢ which
belong to L (R") (see [8]).

LiMMa 2.1. Let 1<p<aoo and o=(0,..,0,)>0. Then #, (R")e
Lin (R") and

+ 0,

dim (4, ,(®"), L,(R") < T2

The case for p=(p, ..., p) follows from [2]. The argument in the general
case is similar.

LemMMa 22, Let T<p=(ps, 0 P)<qQ=(q,s - g, )<0®, reN, r>
Y (UYp;—Vgq,), y>0, and o= (3'", .., y""). Then there exists a constant

¢ >0 depending only p, q, and r so that
AW (RY), B, (R*), L(R™) <y 0 St o,

This i1s a consequence of the general result [4].

Let .# be a finite set, neN, #F'=¢x ... x#, N=card #”, and
I1<p=(p; ... p,) <. Denote by l‘;’(.f") the normed linear space of
functions a;, ., j,€#, 1 <k <n, on .#" with the mixed norm

Py Pripa A\ Lipn
”“ju. /‘,.”/';'(.ﬂ") = (Z ( Z (Z |aj1, -~~-./n|pl> ) ) .
In Nin oy N

n

LEmMMA 23. Let k, neN, 4 be a finite set, card #"=: N>k,
1<p<q<2, and BI(F") the unit ball in lg(.f"). Then

N N n k
d(BIN(F"), 13" > [1- .
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Proof. The inequality
”aj‘ .. ]n” I:’l-’m) < Hajl _ln“ l":(‘f") (2.1 )

holds true for all a, _, el}(£").

Indeed, if n =1, then the assertion is true (see [12]). The general case is
proved by an obvious inductive argument.

By (2.1) and definition of the Kolmogorov k-width and since
1 < p<q<2, we obtain

d(BIN(I), 1¥(5™) 2 d(BIY (™), 1(57).

I5(.#7) in the special case p = (p, .., p) we can identify with / (R¥). It is the
normed space of vectors &=(&,, .., Ey)eR”Y with norm HéH,F(R,\, =
(X7_, 1,17)"". Thus,

, , k
d(BIF(F"), 1;(F™) = di( BI,(RY), L(R™)) = /1 -

where the last equality is a well-known result (see, for example, [11]).
Lemma 2.3 is proved.

Let ¢(-)e C*(R), supp ¢(-)<= [0, 1], (1) =0, [, ¢(s)dt =1, and h>0.
Put y; (1) =v(t/h—j), je Z. Then supp ¥, ,(-)= 4, ,:=[jh (j+ 1h].

Let ne N. We associate with any (j,, .., j,)€Z" and A > 0 the following
function on R™:

¥ ot )= T1 ¥, )
k=1

It is obvious that ¥, , ,(-)eC*(R")and supp ¥, ,(-)=d, ., , =
A px - X4, 4

For any n, me N, k>0 define the space L, ,(n) by

L, s(n):=span{¥, , ()| Jj;s.sjp=—m, . ,m—1}

It is easy to see that dim L,, ,(n)=(2m)", and supp x(-}< [ —mh, mh]"
when x(-)e L, ,(n).
For x(-)e L,([ —mh, mh]") put

m—1

Pooax(:)i=h—" Y (L_m_hx(r)dz>¥fn,_,m,,(-). (2.2)

JU s =
LemMa 24. Let m, ne N and h> 0.

(1) If1<p=(p,,... p,)<o, then P, ., is a continuous linear
projection in L ([ —mh, mh]"), and there exists a constant ¢ >0 depending
only on p such that (P, , .l <c.
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Q) If 1<p=(p1, o p) <, k=(kysnk)EL", S ={—m, .,
m—1}, N=2m)", and x(-)=3" ! a . a-)EL,, 4(n), then

Fe e = —m iy g Ty
there exists a constant ¢ >0 depending only on p and k such that

“akl o +k"x( )/51’1(I o atﬁ”“ Lg([«mh, mh}”®) = Ch Ik +zjﬂ:l “/pj'”aj‘ ..,j,,”/:"(‘;"mp
(2.3)
where k| =k, + - +k,.

3) F1<p=(pis s l)<9=(q1, -, g) <0 and k=(ky, .., k,)e
2", then there exists a constant ¢ >0 depending only on p, q, and k such
that the inequality

“aln + e +knx(,)/at’]<l .. atﬁ"” Ly([ b, m 1)

. n "“ N l"!
ch W+ g U ”x(‘)”[,p([~mh.mh]") (2.4)

holds true for alf x(-Ye L,, ,(n).

The assertions of Lemma 2.4 are directly verified for n=1. The general
case is proved by an inductive argument. We omit the corresponding
routine calculations.

3. PROOFS OF THE MAIN RESULTS

3.1, Proof of Theorem 1.1. Necessity. Let d (W (R"), L (R"),
@(-))<oo. Then d(W(R"), L, Ly(R"))<oc for some LeLin(Ly(R"))
such that dim(L, L (R"), o(-))<v.

Let £> 0. There is a sequence {a,}, _, for which

.. Kila, L, L(R") . K(a,, L, L(R"))
lim inf = lim .
a—x (P(a) § =0 q)(as)

For each seN there exists an M(s, ¢)e Lin(L ([ —a,, a,]") so that
dim M(s, e) < K, (a,, L, L,(R"}) and

d(P,, y(-), M(s,e), L{{ —a,, ¢, 1) <e | y( ) L) (3.1)

for all y(-)e L.

Set m, :=[(4ve(a,))"/2], h,:=2a,/(4vp(a,))"’" and denote L, :=
L,. »(n) (see Section2). Since m h ,<a,, then sup x(-)=[—a,, a,]” for
x(-)eL,.

Let c(k,p) be a constant in (24) for p=gq, c =c¢/(r,p):=
nmax{clk, p)| k| =r}, seN, and

x(-)e Cy 'L n BL,([ —a,, a,]"). (3.2)
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Then, by (24), x(-)e W,(R") (we assume that x(¢)=0 for ¢ outside the
[_ass as]n}-
For each y(-)e L, we have (M := M(s, &)
"x() - y()" Lq(RM) P ||X() - PaJ y()“ Lq([ —as, as1™)
Zd(x(), Mv Lq([_as? as]n))
—d(P, y(-), M, L([—a,, a,]"))
=" dix(), M, Ly([—a,. 3,0) ~ & 1) o
Zd(\‘(), M: Lq([_as’ as]")_s ”Y()“ Lq(R")

—¢&llx)—=y() Le(R7)>

-
w

ie.,

(1) [x() = ¥ Loy Z d(x(-), M, Lo([ —a, a,1") — & 1x() Lymry-
It follows that
(1 +¢) d(W,(R"), L, Lo(R™))
Zd(x(-), M, Ly([ —a,, a,1")) — & Ix(: ) L ) (3.3)
By (2.4) for k=0 and (3.2), one has
x (Ol Le(®") = (N Lo([ - mghy, mgh 1™
< CohEl- = Ve) ()| L a1

S hEi-r M=l (3.4)

where ¢, > 0 depends only p, q, and r.
By taking the supremum over x(-) satisfying (3.2), and using (3.4), we
deduce from (3.3) that

(1+e) d(W(R"), L, Lo(R™))
= cl— lhrsd(Ls [ BLp([ —4a,, ax]")a M» Lq([ —4a,, as]n))
— ey bl E - ey ey, (3.5)

For sufficiently large s, K.(a,, L, LW(R"))gévq)(ax) and since 3vo(a,)/

dim L, — 3, then there is an sy=s4(¢)eN so that 2ve(a,)/dim L <,

52 5y. Thus,
K(a,, L, Ly(R")< 3dim L, (3.6)

for all s = s,.
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Let s3> s,. Put [, :=2" '[(4vp(a,))""/2]. Then

(3.6}

I,=%dim L, '3 K (a,, L, L(R")>dim M(s, ¢).

It follows from this and the first two assertions of Lemma 2.4 (by using the
usual discretization technique) that

d(L,n BL([ —a,, a,]"), M(s, &), Lo([ —a,, a,]"))
2d (L,nBLy([~a, a]1"), L([—a, a]1")
Zegd (L,nBL([—a,,a]"), LinLy([—a,,a]"))
> ¢ hE Ve Vg, (BN ), IN(F0,)), (3.7)

”y

where 4, ={—m,, .. m,— 1}, N =(2m)"

”y

From (3.5), (3.7), and Lemma 2.3, we get

(1+) d(W(R"), L, Ly(R"))

> (0 — ey) bt i M 1ip)

=co(ce—EC3) vV (mir = 27 (1ip; - “S"’”(a'?/qp{a\‘))(“‘J"Nr" i (ip; e (3.8)
For sufficiently small 6 >0, ¢ —&c; > 0. Since r —37_ | (1/p;,— 1/q,) >0 and

the left-hand side of (3.8) is finite, then lim inf (a"/p(a)) < oo. The
necessity is proved.

a = K

Sufficiency. Let liminf, | (a"/¢(a))=:b < . From the identity
K(a, B, (R"), L(R") K(a, B, ((R"), L(R")) (2a)"

o(a) (2a)" o(a)

and Lemma 2.1 it follows that (for ¢ = (3', ..., 7))
dim(4, (R"), L (R"), o(-)) <y2"b/n". (39)

Put y=v(r/2)"b ' if >0, and y=1 if h=0. Then, by (3.9) and
Lemma 2.2, we have

d(W4(R"), L(R"), @(-)) < cqv (Ve Eio (b van,

that is, d (W (R"), L (R"), ¢(-)) < and, in addition, the required upper
bound is obtained.

Let liminf,_, , (a"/@(a))>0. Then the required lower bound follows
from (3.8). Theorem 1.1 is proved.
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3.2. Proof of Theorem 1.2. The upper bound. Let p>0, pBR" :=
{t=(t;, - t,)eR"| 17+ --- +12<p’} and F be the Fourier transform in
L,(R"). Denote by %,(R") the set of functions in L,(R") whose Fourier
transform is contained in pBR". Then %,(R")e Lin (L,(R")) and

dim(%,(R"), Ly(R")) = V,(p)/(2n)", (3.10)

where V,(p) :=n"?p"/I'(n/2 + 1) is the volume of pBR".

This assertion follows from [2], where the more general formula was
proved.

By T, denote the map in L,(R") defined by FT,x(-) =X, Fx(-), where
X ,(-) is the characteristic function of pBR". It is not hard to check that T,
is a continuous linear operator in L,(R"),

Let x(-)e B#3(R"). By Plancherel’'s theorem and the definition of
A 3(R"), one has

! )
15() = T, X012 my = s I1FX() = FT, %)y

(2Zn)”
__t 2
‘(271)" lol=p @) @
1 A 2 2
" ny Lo.%(uqar) (I+10l*)* [Fx(0)I* do
Qif_pj)__“_‘ 222 2
ST @y fw|(1+lal) Fx(o)|" do
Gl e :
o (en) WEL (M 2oy
=(1+p?) * 1LxC)II2 m)
= (14 7)1y < (14 p7) % (3.11)

Evidently, Im T, = %,(R") for any p>0. Let p =2 /n(I(n/2)+1)v)"".
Then ¥,(§)/(2n)”=v. Hence, by (3.10), dim(Im 7, L,(R"))<v. So it
follows from this and (3.11) that

d(BH%R"), L,(R")) < d(BAXR™), Im T;, L,(R"))

< sup ()= Tox()) ywe
X(-)e BAI(RM

n 2/ny\ —a2
<(1+4n<F(§+l)v>) :
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The lower bound. Let p >0 be such that V, (p)/(2n)" > v. It is obvious
that there exist a positive integer N, sets &, +A4 <R”, s=1,.., N,
where £, eR”, s=1,., N, 6>0, and 4,:={t=(t,,..,t,)eR"||t] <a,
i=1,..,n} so that int(¢,+ 4,)nint(E,+4,) =, i#j, UV, (&,+4,)c
pBR™ and mes(U"_, (&, +4,))/(2n)" = N(20)"/(2n)" > v.

Choose p,€(0,a) such that N(2(c —p))"/(2n)">v and let O<pu<
u, <o and k=(k,, .., k,)eZ". Consider the function

D, a(zl 3 ey tn)

. l—‘[ sin(c — u)(t,— k,n/(a — p)) sin u(t,— k,n/(a — p))
B o — p); — k,m/(o — p))? '

It is easy to verify that ¢, (.)€ %, ,(R"), where 6 = (o, ..., 0). Then, by the
Paley-Wiener theorem, Fp, ,(¢1)=0 a.e. on R"\ 4.
Let a> 0. Set

Q(a) :=span{@, ,(1)e""| |k
Llalo—p)nl, j=1,.,ns=1,., N}

If x(-)eQ(a) we see that Fx(1)=0 ae. on R™N\(UM, (£,+4,)). In
particular, Q(a)< %,(R").

Next, there is an @, > 0 such that for each a > a, and any x(-)e Q(a) the
inequality

[XCH fymny S HC@) 1XC Ly - gy (3.12)

holds true, where n(a)>0 and n(a)—1 as a — oo.

For n=1, (3.12) was proved in [7]. The argument in the general case
is similar.

We now show that

d,(%,(R") A BLy(R"), Ly(R™)) > 1. (3.13)

Let L e Lin (L,(R")), dim(L, L,(R"))<v, az=a,, S(a) be the restriction
of Q(a) to [—a,a]”, and x,(-)e S(a)n (n(a)) ' BL,([ —a, a]”). Because
x,{-) is an analytic function, there is a unique function x(-)e Q(a) such that
X() {4 ap=Xa(-). Hence, by (3.12), [ x( )l gy < 1, thatis, x(-) € G,(R") N
BL,(R").

By an argument similar to the proof of Theorem 1.1, we have (see (3.3))

(1+¢)d(%,(R") n BLy(R"), L, L,(R"))
2d(x,(-), M{a, ), Ly([ —a,a]")) —¢, (3.14)
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where £¢>0, M(a, ) is a subspace of L,([ —a,a]"), and dim M(qa, )<
K.(a, L, L,(R")).
By taking the supremum over such x,(-), we obtain

(1 +¢&)d(%,(R")n BL,(R"), L, L,(R"))
= (n(a))~' d(S(a) " BLy([ —a, a]"), M(a, &), Ly([ —a,a]")) —e.  (3.15)
It is clear that dim S(a¢)=dim Q(a)= N(2[a(6 —u,)/x]+1)". By

assumption lim, _, . (dim S(a)/(2a)")= N(Q2(g — u,})"/(2n)"=: v, >v. Let
4> 0 satisfy vy —d>v+ 5 and {a,},_,, be a sequence for which

lim inf Kel@ L Lay(R™) . Kila,, L, Ly(R")
a— (20)" §—= oo (20,\-)"

Then there exists an integer S, such that K, (a,, L, L,(R")) < (v + 6)(24a,)”
and dim S{a,) > (v, — d)(2a,)" for all s =s,. That is,

dim M(a,, ¢) < K,(a,, L, L,(R")) < dim S(a,).

Hence, by Tikhomirov’s theorem (let X be a normed linear space,
LeLlin(X), and dim L =n+ 1; then d,(L n BX, X)=1), we have

d(S(a,)n BLy([ —a,, a,]1"), M(a,, ¢), Ly([ —a,,a,]")) 2 1
for all s> s,.

From this and (3.15) and since #(a)— 1 as a - o0, we obtain (3.13).
Next, the Bernstein-type inequality

12N e 30mem < €14 22 X yemy (3.16)

holds true for all x(-)e %,(R").
Indeed, if x(-)€ %,(R"), then, by Plancherel’s theorem,

() 3pzemy = ((1+ A7) [Fx(A))* dA
R

L
(2m)"

L[ 1R )

T Q) e

1 2\ 2
<G (407 [ 1Ex(? da

=(1+ p2)* 1x()3 am-
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Inequality (3.16) means that 4,(R")n (1 + p?) *2 BLy(R")c BAIR").
It follows from this and (3.13) that

d(BA(R"), Ly(R™) = (1+p?) *?d(%,(R") " BLy(R"), Ly(R"))

= (
= (1+p%) 2
Since this is true of every p > 0 such that V,(p)/(2n)" > v we deduce that

d(BAYR"), Lo(R") > (1+4)

(e (o))

Theorem 1.2 is proved.

2.
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