Average Widths of Sobolev Classes on \mathbb{R}^n

G. G. Magaril-Il'yaev*

Moscow Institute of Radio Engineering, Electronics and Automatic, Moscow, Russia

Communicated by Allan Pinkus

Received February 21, 1992; revised July 23, 1992

In this paper, we introduce the concept of φ -average dimension for some subspaces of $L_{\mathfrak{p}}(\mathbb{R}^n)$ and define the corresponding Kolmogorov φ -average v-width of a set in $L_{\mathfrak{p}}(\mathbb{R}^n)$. For the Sobolev class $W_{\mathfrak{p}}'(\mathbb{R}^n)$ in $L_{\mathfrak{q}}(\mathbb{R}^n)$ we find necessary and sufficient conditions for this quantity to be finite and determine its asymptotic behaviour as $v \to \infty$. We also obtain the exact value of the average v-widths of some classes of functions in $L_2(\mathbb{R}^n)$.

1. DEFINITIONS AND FORMULATION OF THE MAIN RESULTS

1.1. Let $(X, \|\cdot\|)$ be a normed linear space. We use the following notation:

 $BX := \{x \in X \mid ||x|| \le 1\}$ is the unit ball in X,

Lin(X) is the set of all linear subspaces of X.

 $d(x, A, X) := \inf\{\|x - y\| \mid y \in A\}$ is the distance of $x \in X$ from $A \subset X$, $d(C, A, X) := \sup\{d(x, A, X) \mid x \in C\}$ is the deviation of $C \subset X$ from $A \subset X$,

 $d_n(C, X) := \inf\{d(C, L, X) \mid L \in \text{Lin}(X), \text{ dim } L \leq n\}$ is the Kolmogorov *n*-width of C in X $(n \in \mathbb{Z}_+ := \{0, 1, 2, ...\})$.

1.2. Let $n \in \mathbb{N} := \{1, 2, ...\}$, $p := (p_1, ..., p_n)$, $1 \le p_i \le \infty$, i = 1, ..., n, I = (a, b), $-\infty \le a < b \le \infty$, $I^n = I \times \cdots \times I$, and $L_p(I^n)$ denote the Banach space of measurable functions $x(\cdot)$ on I^n with the mixed norm

$$||x(\cdot)||_{L_{\mathbf{p}}(I^n)} := \left(\int_I dt_n \left(\int_I dt_{n-1} \cdots \left(\int_I |x(t)|^{p_1} dt_1\right)^{p_2/p_1} \cdots\right)^{p_n/p_{n-1}}\right)^{1/p_n}$$

(see [1]).

When p = (p, ..., p), $L_p(I^n)$ coincides with the usual space $L_p(I^n)$. For ease of writing, we denote 1 = (1, ..., 1), 2 = (2, ..., 2), $\infty = (\infty, ..., \infty)$.

^{*} Supported by Russian Foundation of Fundamental Research.

If $p = (p_1, ..., p_n)$, $q = (q_1, ..., q_n)$, $1 \le p_i$, $q_i \le \infty$, i = 1, ..., n, then $p \le q$ (p < q) means $p_i \le q_i$ $(p_i < q_i)$, i = 1, ..., n.

Let a > 0, and P_a be the continuous linear operator in $L_p(\mathbb{R}^n)$ defined by $P_a x(\cdot) := X_a(\cdot) x(\cdot)$, where $X_a(\cdot)$ is the characteristic function of the cube $[-a, a]^n$.

Set

$$\operatorname{Lin}_{\mathbf{c}}(L_{\mathbf{p}}(\mathbb{R}^n)) := \{ L \in \operatorname{Lin}(L_{\mathbf{p}}(\mathbb{R}^n) \mid \text{ restriction } P_a \text{ to } L \text{ is a compact operator for all } a > 0 \}.$$

Let $L \in \operatorname{Lin}_c(L_p(\mathbb{R}^n))$ and a > 0. Then $P_a(L \cap BL_p(\mathbb{R}^n))$ is relatively compact and therefore the quantity

$$K_{\varepsilon}(a, L, L_{\mathfrak{p}}(\mathbb{R}^{n}))$$

$$:= \min\{n \in \mathbb{Z}_{+} \mid d_{n}(P_{a}(L \cap BL_{\mathfrak{p}}(\mathbb{R}^{n})), L_{\mathfrak{p}}(\mathbb{R}^{n})) < \varepsilon\}$$

is finite for every a > 0 and $\varepsilon > 0$.

It is easily verified that the function $a \to K_{\varepsilon}(a, L, L_{p}(\mathbb{R}^{n}))$ is non-decreasing and the function $\varepsilon \to K_{\varepsilon}(a, L, L_{p}(\mathbb{R}^{n}))$ is nonincreasing.

Remark. Obviously we can identify $P_a(L \cap BL_{\mathfrak{p}}(\mathbb{R}^n))$ with the restriction $L \cap BL_{\mathfrak{p}}(\mathbb{R}^n)$ to $[-a, a]^n$. It is then easy to check that

$$K_{\varepsilon}(a, L, L_{\mathfrak{p}}(\mathbb{R}^n))$$

$$= \min\{n \in \mathbb{Z}_+ \mid d_n(P_a(L \cap BL_{\mathfrak{p}}(\mathbb{R}^n)), L_{\mathfrak{p}}([-a, a]^n)) < \varepsilon\}.$$

Let Φ denote the set of all positive nondecreasing functions $\varphi(\cdot)$ on $(0, \infty)$ for which $\varphi(a) \to \infty$ as $a \to \infty$.

DEFINITION 1.1. Let $L \in \operatorname{Lin}_{c}(L_{p}(\mathbb{R}^{n}))$ and $\varphi(\cdot) \in \Phi$. Then the φ -average dimension of L in $L_{p}(\mathbb{R}^{n})$ is defined as

$$\dim(L, L_{\mathbf{p}}(\mathbb{R}^n), \varphi(\cdot)) := \lim_{\varepsilon \to 0} \liminf_{a \to \infty} \frac{K_{\varepsilon}(a, L, L_{\mathbf{p}}(\mathbb{R}^n))}{\varphi(a)}. \tag{1.1}$$

If $\varphi(a) = (2a)^n$ (the volume of cube $[-a, a]^n$) then we call (1.1) the average dimension of L in $L_p(\mathbb{R}^n)$ and denote it by $\overline{\dim}(L, L_p(\mathbb{R}^n))$. In this case (1.1) is a slight modification of the definition given by Tikhomirov [10].

DEFINITION 1.2. Let C be a centrally symmetric subset of $L_{\mathfrak{p}}(\mathbb{R}^n)$, $\varphi(\cdot) \in \Phi$, and $v \ge 0$. The Kolmogorov φ -average v-width of C in $L_{\mathfrak{p}}(\mathbb{R}^n)$ is defined as

$$d_{\mathbf{v}}(C, L_{\mathfrak{p}}(\mathbb{R}^n), \varphi(\cdot)) := \inf_{L} \sup_{x(\cdot) \in C} \inf_{y(\cdot) \in L} \|x(\cdot) - y(\cdot)\|_{L_{\mathfrak{p}}\mathbb{R}^n}, \tag{1.2}$$

where the infimum is taken over all subspaces $L \in \operatorname{Lin}_{\mathbf{c}}(L_{\mathbf{p}}(\mathbb{R}^n))$ such that $\dim(L, L_{\mathbf{p}}(\mathbb{R}^n), \varphi(\cdot)) \leq \nu$.

If $\varphi(a) = (2a)^n$, then we call (1.2) the Kolmogorov average ν -width of C in $L_{\mathfrak{p}}(\mathbb{R}^n)$ and denote it by $\bar{d}_{\nu}(C, L_{\mathfrak{p}}(\mathbb{R}^n))$.

1.3. Let $S = S(\mathbb{R}^n)$ be the space of rapidly decreasing functions on \mathbb{R}^n , and $S' = S'(\mathbb{R}^n)$ the dual space of tempered distributions with the usual topologies. Denote by $F: S' \to S'$ and $F^{-1}: S' \to S'$ the Fourier transform and its inverse, respectively.

For each $\alpha \in \mathbb{R}$, $\mathscr{K}_{\alpha} \colon S' \to S'$ denotes the operator defined by $\mathscr{K}_{\alpha} x := (1+|\sigma|^2)^{\alpha/2} x$, where $\sigma = (\sigma_1, ..., \sigma_n)$, $|\sigma|^2 = \sigma_1^2 + \cdots + \sigma_n^2$. Let $I_{\alpha} := F^{-1} \circ \mathscr{K}_{\alpha} \circ F$ and $1 \le p \le \infty$. Set

$$\mathcal{H}^{\alpha}_{\mathfrak{p}}(\mathbb{R}^n) := \big\{ x \in S'(\mathbb{R}^n) \mid (I_{\alpha}x)(\cdot) \in L_{\mathfrak{p}}(\mathbb{R}^n) \big\}.$$

This is a Banach space with norm $||x(\cdot)||_{\mathcal{H}^{\alpha}(\mathbb{R}^n)} := ||(I_{\alpha}x)(\cdot)||_{L_{\alpha}(\mathbb{R}^n)}$ [3].

If p = (p, ..., p), then $\mathcal{H}_p^{\alpha}(\mathbb{R}^n)$ are the well-known spaces of Bessel potentials, or Liouville spaces (see, for example, [8, 9]).

When $1 and <math>\alpha = r \in \mathbb{N}$, $\mathcal{H}_{p}^{\alpha}(\mathbb{R}^{n})$ coincides with the Sobolev space

$$\mathcal{W}_{\mathbf{p}}^{\alpha}(\mathbb{R}^n) := \left\{ x(\cdot) \in L_{\mathbf{p}}(\mathbb{R}^n) \mid \partial^r x(\cdot) / \partial t_i^r \in L_{\mathbf{p}}(\mathbb{R}^n), j = 1, ..., n \right\}$$

(see [3]).

The set

$$W_{\,\mathfrak{p}}^{\,\prime}(\mathbb{R}^n) := \left\{ x(\,\cdot\,) \in \mathscr{W}_{\,\mathfrak{p}}^{\,\alpha}(\mathbb{R}^n) \, \left| \, \sum_{j \, = \, 1}^n \, \left\| \hat{\sigma}^r x(\,\cdot\,) / \hat{\sigma}t_j^{\,\prime} \right\|_{L_{\mathfrak{p}}(\mathbb{R}^n)} \leqslant 1 \right\} \right.$$

we call the Sobolev class.

In the case where n=1, we have determined the asymptotic behaviour of $d_v(W_p^r(\mathbb{R}), L_q(\mathbb{R}), \varphi(\cdot))$ (for some p, q) as v grows, and we have also found the exact values of $\bar{d}_v(W_p^r(\mathbb{R}), L_p(\mathbb{R}))$ for all $1 \le p \le \infty$ (see [5-7]). In this paper, we are interested in the case where n is an arbitrary positive integer.

1.4. The following assertions are the main results in this paper.

Theorem 1.1. Let $r, n \in \mathbb{N}$, $1 or <math>1 , if <math>p \ne q$. Next, let $r > \sum_{j=1}^n (1/p_j - 1/q_j)$, $\varphi(\cdot) \in \Phi$, and v > 0. Then $d_v(W_p'(\mathbb{R}^n), L_q(\mathbb{R}^n), \varphi(\cdot)) < \infty$ if and only if $\lim_{n \to \infty} (a^n/\varphi(a)) < \infty$.

If, in addition, $\lim \inf_{a \to \infty} (a^n/\varphi(a)) > 0$, then

$$d_{v}(W'_{\mathbf{p}}(\mathbb{R}^{n}), L_{\mathbf{q}}(\mathbb{R}^{n}), \varphi(\cdot)) \simeq \begin{cases} v^{-r/n}, & p = q \\ v^{-(1/n)(r - \sum_{j=1}^{n} (1/p_{j} - 1/q_{j})}, & 1$$

THEOREM 1.2. Let $n \in \mathbb{N}$, $\alpha > 0$, and $\nu \ge 0$. Then

$$\bar{d}_{v}(B\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n}), L_{2}(\mathbb{R}^{n})) = \left(1 + 4\pi \left(\Gamma\left(\frac{n}{2} + 1\right)v\right)^{2/n}\right)^{-\alpha/2},$$

where $\Gamma(\cdot)$ is the Euler function (and, recall, that $B\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n})$ is the unit ball in $\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n})$).

2. PRELIMINARY RESULTS

Let $n \in \mathbb{N}$, $\sigma = (\sigma_1, ... \sigma_n) \geqslant \emptyset$, $1 \leqslant p \leqslant \infty$, and $\mathcal{B}_{\sigma, p}(\mathbb{R}^n)$ denote the restriction to \mathbb{R}^n of the space of all functions of exponential type σ which belong to $L_p(\mathbb{R}^n)$ (see [8]).

LEMMA 2.1. Let $1 \leq p \leq \infty$ and $\sigma = (\sigma_1, ..., \sigma_n) > 0$. Then $\mathcal{B}_{\sigma, p}(\mathbb{R}^n) \in \operatorname{Lin}_{\operatorname{c}}(\mathbb{R}^n)$ and

$$\overline{\dim}(\mathscr{B}_{\sigma, p}(\mathbb{R}^n), L_p(\mathbb{R}^n)) \leqslant \frac{\sigma_1 \cdot \dots \cdot \sigma_n}{\pi^n}.$$

The case for p = (p, ..., p) follows from [2]. The argument in the general case is similar.

LEMMA 2.2. Let $1 , <math>r \in \mathbb{N}$, $r > \sum_{i=1}^n (1/p_i - 1/q_i)$, $\gamma > 0$, and $\sigma = (\gamma^{1/n}, ..., \gamma^{1/n})$. Then there exists a constant c > 0 depending only p, q, and r so that

$$d(W_{\mathfrak{p}}^{r}(\mathbb{R}^{n}), \mathscr{B}_{\sigma,\mathfrak{q}}(\mathbb{R}^{n}), L_{\mathfrak{q}}(\mathbb{R}^{n})) \leq c\gamma^{-(1/n)(r-\sum_{j=1}^{n}(1/p_{j}-1/q_{j}))}.$$

This is a consequence of the general result [4].

Let \mathscr{I} be a finite set, $n \in \mathbb{N}$, $\mathscr{I}^n = \mathscr{I} \times \cdots \times \mathscr{I}$, $N = \operatorname{card} \mathscr{I}^n$, and $1 \leq p = (p_1, ..., p_n) \leq \infty$. Denote by $l_p^N(\mathscr{I}^n)$ the normed linear space of functions $a_{j_1 \cdots j_n}, j_k \in \mathscr{I}$, $1 \leq k \leq n$, on \mathscr{I}^n with the mixed norm

$$\|a_{j_1,\ldots,j_n}\|_{l_p^N(\mathscr{I}^n)} := \left(\sum_{j_n} \left(\sum_{j_{n-1}} \cdots \left(\sum_{j_1} |a_{j_1,\ldots,j_n}|^{p_1}\right)^{p_2/p_1} \cdots \right)^{p_n/p_{n-1}}\right)^{1/p_n}$$

LEMMA 2.3. Let k, $n \in \mathbb{N}$, \mathcal{I} be a finite set, card $\mathcal{I}^n =: N > k$, $1 \le p \le q \le 2$, and $Bl_p^N(\mathcal{I}^n)$ the unit ball in $l_p^N(\mathcal{I}^n)$. Then

$$d_k(Bl_{\mathfrak{p}}^N(\mathcal{I}^n),\, l_{\mathfrak{q}}^N(\mathcal{I}^n)) \geq \sqrt{1-\frac{k}{N}}.$$

Proof. The inequality

$$||a_{j_1...j_n}||_{l_n^N(\mathscr{I}^n)} \le ||a_{j_1...j_n}||_{l_n^N(\mathscr{I}^n)}$$
(2.1)

holds true for all $a_{i_1,\dots,i_n} \in l_{\mathbb{P}}^N(\mathscr{I}^n)$.

Indeed, if n = 1, then the assertion is true (see [12]). The general case is proved by an obvious inductive argument.

By (2.1) and definition of the Kolmogorov k-width and since $1 \le p \le q \le 2$, we obtain

$$d_k(Bl_n^N(\mathscr{I}^n), l_n^N(\mathscr{I}^n)) \geqslant d_k(Bl_n^N(\mathscr{I}^n), l_n^N(\mathscr{I}^n)).$$

 $l_{\mathfrak{p}}^{N}(\mathscr{I}^{n})$ in the special case $\mathfrak{p}=(p,...,p)$ we can identify with $l_{p}(\mathbb{R}^{N})$. It is the normed space of vectors $\xi=(\xi_{1},...,\xi_{N})\in\mathbb{R}^{N}$ with norm $\|\xi\|_{I_{p}(\mathbb{R}^{N})}:=(\sum_{i=1}^{n}|\xi_{i}|^{p})^{1/p}$. Thus,

$$d_{k}(Bl_{1}^{N}(\mathcal{I}^{n}), l_{2}^{N}(\mathcal{I}^{n})) = d_{k}(Bl_{1}(\mathbb{R}^{N}), l_{2}(\mathbb{R}^{N})) = \sqrt{1 - \frac{k}{N}},$$

where the last equality is a well-known result (see, for example, [11]). Lemma 2.3 is proved.

Let $\psi(\cdot) \in C^{\infty}(\mathbb{R})$, supp $\psi(\cdot) \subset [0, 1]$, $\psi(t) \geqslant 0$, $\int_0^1 \psi(t) dt = 1$, and h > 0. Put $\psi_{i,h}(t) = \psi(t/h - j)$, $j \in \mathbb{Z}$. Then supp $\psi_{j,h}(\cdot) \subset \Delta_{j,h} := [jh, (j+1)h]$.

Let $n \in \mathbb{N}$. We associate with any $(j_1, ..., j_n) \in \mathbb{Z}^n$ and h > 0 the following function on \mathbb{R}^n :

$$\Psi_{j_1...j_n,h}(t_1,...,t_n) := \prod_{k=1}^n \psi_{j_k,h}(t_k).$$

It is obvious that $\Psi_{j_1 \cdots j_n, h}(\cdot) \in C^{\infty}(\mathbb{R}^n)$ and supp $\Psi_{j_1 \cdots j_n, h}(\cdot) \subset \Delta_{j_1 \cdots j_n, h} := \Delta_{j_1, h} \times \cdots \times \Delta_{j_n, h}$.

For any $n, m \in \mathbb{N}$, h > 0 define the space $L_{m,h}(n)$ by

$$L_{m,h}(n) := \operatorname{span} \{ \Psi_{j_1 \cdots j_n,h}(\cdot) \mid j_1, ..., j_n = -m, ..., m-1 \}.$$

It is easy to see that dim $L_{m,h}(n) = (2m)^n$, and supp $x(\cdot) \subset [-mh, mh]^n$ when $x(\cdot) \in L_{m,h}(n)$.

For $x(\cdot) \in L_1([-mh, mh]^n)$ put

$$P_{m, n, h} x(\cdot) := h^{-n} \sum_{j_1, \dots, j_n = -m}^{m-1} \left(\int_{\Delta j_1 \dots j_n, h} x(\tau) \, d\tau \right) \Psi_{j_1 \dots j_n, h}(\cdot). \tag{2.2}$$

LEMMA 2.4. Let $m, n \in \mathbb{N}$ and h > 0.

(1) If $1 \le p = (p_1, ..., p_n) \le \infty$, then $P_{m,n,h}$ is a continuous linear projection in $L_p([-mh, mh]^n)$, and there exists a constant c > 0 depending only on p such that $||P_{m,n,h}|| \le c$.

(2) If $1 \le p = (p_1, ..., p_n) \le \infty$, $k = (k_1, ..., k_n) \in \mathbb{Z}_+^n$, $\mathcal{I}_m = \{-m, ..., m-1\}$, $N = (2m)^n$, and $x(\cdot) = \sum_{j_1, ..., j_n = -m}^{m-1} a_{j_1 \cdots j_n} \mathcal{I}_{j_1 \cdots j_n, h}(\cdot) \in L_{m, h}(n)$, then there exists a constant c > 0 depending only on p and k such that

$$\|\partial^{k_1+\cdots+k_n}x(\cdot)/\partial t_1^{k_1}\cdots\partial t_n^{k_n}\|_{L_{\mathbf{p}}([-mh,\,mh]^n)}=ch^{-|k|+\sum_{j=1}^n(1/p_j)}\|a_{j_1\cdots j_n}\|_{l_{\mathbf{p}}^N(\mathscr{S}_m^n)},$$
(2.3)

where $|k| = k_1 + \cdots + k_n$.

(3) If $1 \le p = (p_1, ..., p_n) \le q = (q_1, ..., q_n) \le \infty$ and $k = (k_1, ..., k_n) \in \mathbb{Z}_+^n$, then there exists a constant c > 0 depending only on p, q, and k such that the inequality

$$\|\hat{\partial}^{k_{1}+\cdots+k_{n}}x(\cdot)/\hat{\partial}t_{1}^{k_{1}}\cdots\hat{\partial}t_{n}^{k_{n}}\|_{L_{\mathbf{q}}([-mh,\,mh]^{n})} \\ \leq ch^{-|k|+\sum_{j=1}^{n}(1/q_{j}-1/p_{j})}\|x(\cdot)\|_{L_{\mathbf{p}}([-mh,\,mh]^{n})}$$
(2.4)

holds true for all $x(\cdot) \in L_{m,h}(n)$.

The assertions of Lemma 2.4 are directly verified for n = 1. The general case is proved by an inductive argument. We omit the corresponding routine calculations.

3. PROOFS OF THE MAIN RESULTS

3.1. Proof of Theorem 1.1. Necessity. Let $d_{\nu}(W_{\mathfrak{p}}'(\mathbb{R}^n), L_{\mathfrak{q}}(\mathbb{R}^n), \varphi(\cdot)) < \infty$. Then $d(W_{\mathfrak{p}}'(\mathbb{R}^n), L, L_{\mathfrak{q}}(\mathbb{R}^n)) < \infty$ for some $L \in \operatorname{Lin}_{\mathbf{c}}(L_{\mathfrak{q}}(\mathbb{R}^n))$ such that $\dim(L, L_{\mathfrak{q}}(\mathbb{R}^n), \varphi(\cdot)) \leq \nu$.

Let $\varepsilon > 0$. There is a sequence $\{a_s\}_{s \in \mathbb{N}}$ for which

$$\lim_{a\to\infty}\inf\frac{K_{\varepsilon}(a,L,L_{\mathsf{q}}(\mathbb{R}^n))}{\varphi(a)}=\lim_{s\to\infty}\frac{K_{\varepsilon}(a_s,L,L_{\mathsf{q}}(\mathbb{R}^n))}{\varphi(a_s)}.$$

For each $s \in \mathbb{N}$ there exists an $M(s, \varepsilon) \in \text{Lin}(L_{q}([-a_{s}, a_{s}]^{n}))$ so that dim $M(s, \varepsilon) \leq K_{\varepsilon}(a_{s}, L, L_{q}(\mathbb{R}^{n}))$ and

$$d(P_{a_s}y(\cdot), M(s, \varepsilon), L_{\mathbf{q}}([-a_s, a_s]^n)) < \varepsilon \|y(\cdot)\|_{L_{\mathbf{q}}(\mathbb{R}^n)}$$
(3.1)

for all $y(\cdot) \in L$.

Set $m_s := [(4v\varphi(a_s))^{1/n}/2]$, $h_s := 2a_s/(4v\varphi(a_s))^{1/n}$ and denote $L_s := L_{m_s, h_s}(n)$ (see Section 2). Since $m_s h_s \le \alpha_s$, then $\sup x(\cdot) \subset [-a_s, a_s]^n$ for $x(\cdot) \in L_s$.

Let c(k, p) be a constant in (2.4) for p = q, $c_1 := c_1(r, p) := n \max\{c(k, p) \mid |k| = r\}$, $s \in \mathbb{N}$, and

$$x(\cdot) \in C_1^{-1} h_s' L_s \cap BL_p([-a_s, a_s]^n).$$
 (3.2)

Then, by (2.4), $x(\cdot) \in W'_{p}(\mathbb{R}^{n})$ (we assume that x(t) = 0 for t outside the $[-a_{s}, a_{s}]^{n}$).

For each $y(\cdot) \in L$, we have $(M := M(s, \varepsilon))$

$$||x(\cdot) - y(\cdot)||_{L_{\mathbf{q}}(\mathbb{R}^{n})} \ge ||x(\cdot) - P_{a_{s}} y(\cdot)||_{L_{\mathbf{q}}([-a_{s}, a_{s}]^{n})}$$

$$\ge d(x(\cdot), M, L_{\mathbf{q}}([-a_{s}, a_{s}]^{n}))$$

$$-d(P_{a_{s}} y(\cdot), M, L_{\mathbf{q}}([-a_{s}, a_{s}]^{n}))$$

$$\stackrel{(3.1)}{\ge} d(x(\cdot), M, L_{\mathbf{q}}([-a_{s}, a_{s}]^{n})) - \varepsilon ||y(\cdot)||_{L_{\mathbf{q}}(\mathbb{R}^{n})}$$

$$\ge d(x(\cdot), M, L_{\mathbf{q}}([-a_{s}, a_{s}]^{n}) - \varepsilon ||x(\cdot)||_{L_{\mathbf{q}}(\mathbb{R}^{n})}$$

$$-\varepsilon ||x(\cdot)||_{L_{\mathbf{q}}(\mathbb{R}^{n})},$$

i.e.,

$$(1+\varepsilon) \|x(\cdot)-y(\cdot)\|_{L_{\mathbf{q}}(\mathbb{R}^n)} \geq d(x(\cdot), M, L_{\mathbf{q}}([-a_s, a_s]^n)) - \varepsilon \|x(\cdot)\|_{L_{\mathbf{q}}(\mathbb{R}^n)}.$$

It follows that

$$(1+\varepsilon) d(W_{\mathfrak{p}}^{r}(\mathbb{R}^{n}), L, L_{\mathfrak{q}}(\mathbb{R}^{n}))$$

$$\geq d(x(\cdot), M, L_{\mathfrak{q}}([-a_{s}, a_{s}]^{n})) - \varepsilon \|x(\cdot)\|_{L_{\mathfrak{p}}(\mathbb{R}^{n})}. \tag{3.3}$$

By (2.4) for k = 0 and (3.2), one has

$$||x(\cdot)||_{L_{\mathbf{q}}(\mathbb{R}^{n})} = ||x(\cdot)||_{L_{\mathbf{q}}([-m_{s}h_{s}, m_{s}h_{s}]^{n})}$$

$$\leq C_{2}h_{s}^{\sum_{j=1}^{n}(1/q_{j}-1/p_{j})} ||x(\cdot)||_{L_{\mathbf{p}}([-a_{s}, a_{s}]^{n})}$$

$$\leq c_{3}h_{s}^{\sum_{j=1}^{n}(1/q_{j}-1/p_{j})+r}, \tag{3.4}$$

where $c_3 > 0$ depends only p, q, and r.

By taking the supremum over $x(\cdot)$ satisfying (3.2), and using (3.4), we deduce from (3.3) that

$$(1+\varepsilon) d(W_{\mathbf{p}}'(\mathbb{R}^{n}), L, L_{\mathbf{q}}(\mathbb{R}^{n}))$$

$$\geq c_{1}^{-1}h_{s}'d(L_{s} \cap BL_{\mathbf{p}}([-a_{s}, a_{s}]^{n}), M, L_{\mathbf{q}}([-a_{s}, a_{s}]^{n}))$$

$$-\varepsilon c_{3}h_{s}'^{+} + \sum_{j=1}^{n} (1/a_{j} - 1/p_{j}). \tag{3.5}$$

For sufficiently large s, $K_{\varepsilon}(a_s, L, L_{\mathfrak{q}}(\mathbb{R}^n)) \leqslant \frac{3}{2}v\varphi(a_s)$ and since $\frac{3}{2}v\varphi(a_s)/\dim L_s \to \frac{3}{8}$, then there is an $s_0 = s_0(\varepsilon) \in \mathbb{N}$ so that $\frac{3}{2}v\varphi(a_s)/\dim L_s \leqslant \frac{1}{2}$, $s \geqslant s_0$. Thus,

$$K_{\varepsilon}(a_s, L, L_{\mathbf{q}}(\mathbb{R}^n)) \leqslant \frac{1}{2} \dim L_s$$
 (3.6)

for all $s \ge s_0$.

Let $s \ge s_0$. Put $l_s := 2^{n-1} [(4v\varphi(a_s))^{1/n}/2]$. Then

$$l_s = \frac{1}{2} \dim L_s \stackrel{(3.6)}{\geqslant} K_{\varepsilon}(a_s, L, L_{\mathfrak{q}}(\mathbb{R}^n)) \geqslant \dim M(s, \varepsilon).$$

It follows from this and the first two assertions of Lemma 2.4 (by using the usual discretization technique) that

$$d(L_{s} \cap BL_{p}([-a_{s}, a_{s}]^{n}), M(s, \varepsilon), L_{q}([-a_{s}, a_{s}]^{n}))$$

$$\geq d_{l_{s}}(L_{s} \cap BL_{p}([-a_{s}, a_{s}]^{n}), L_{q}([-a_{s}, a_{s}]^{n}))$$

$$\geq c_{4}d_{l_{s}}(L_{s} \cap BL_{p}([-a_{s}, a_{s}]^{n}), L_{s} \cap L_{q}([-a_{s}, a_{s}]^{n}))$$

$$\geq c_{5}h_{s}^{\sum_{i=1}^{n}(1/q_{i}-1/p_{i})}d_{l_{s}}(Bl_{p}^{N_{s}}(\mathcal{I}_{m_{s}}^{n}), l_{q}^{N_{s}}(\mathcal{I}_{m_{s}}^{n})), \tag{3.7}$$

where $\mathcal{I}_{m_s} = \{-m_s, ..., m_s - 1\}, N_s = (2m_s)^n$. From (3.5), (3.7), and Lemma 2.3, we get

$$(1+\varepsilon) d(W_{\mathbb{P}}^{r}(\mathbb{R}^{n}), L, L_{\mathbb{q}}(\mathbb{R}^{n}))$$

$$\geq (c_{6} - \varepsilon c_{3}) h_{s}^{r+\sum_{j=1}^{n} (1/q_{j} - 1/p_{j})}$$

$$= c_{7}(c_{6} - \varepsilon c_{3}) v^{-(1/n)(r-\sum_{j=1}^{n} (1/p_{j} - 1/q_{j}))} (a_{s}^{n}/\varphi(a_{s}))^{(1/n)(r-\sum_{j=1}^{n} (1/p_{j} - 1/q_{j}))}. (3.8)$$

For sufficiently small $\varepsilon > 0$, $c_6 - \varepsilon c_3 > 0$. Since $r - \sum_{j=1}^{n} (1/p_j - 1/q_j) > 0$ and the left-hand side of (3.8) is finite, then $\liminf_{a \to \infty} (a^n/\varphi(a)) < \infty$. The necessity is proved.

Sufficiency. Let $\liminf_{a\to\infty} (a^n/\varphi(a)) =: b < \infty$. From the identity

$$\frac{K_{\varepsilon}(a, \mathscr{B}_{\sigma, \mathfrak{q}}(\mathbb{R}^n), L_{\mathfrak{q}}(\mathbb{R}^n))}{\varphi(a)} = \frac{K_{\varepsilon}(a, \mathscr{B}_{\sigma, \mathfrak{q}}(\mathbb{R}^n), L_{\mathfrak{q}}(\mathbb{R}^n))}{(2a)^n} \cdot \frac{(2a)^n}{\varphi(a)}$$

and Lemma 2.1 it follows that (for $\sigma = (\gamma^{1/n}, ..., \gamma^{1/n})$)

$$\dim(\mathcal{B}_{\sigma,\,\mathfrak{q}}(\mathbb{R}^n),\,L_{\mathfrak{q}}(\mathbb{R}^n),\,\varphi(\,\cdot\,))\leqslant \gamma 2^n b/\pi^n. \tag{3.9}$$

Put $\gamma = v(\pi/2)^n b^{-1}$ if b > 0, and $\gamma = 1$ if b = 0. Then, by (3.9) and Lemma 2.2, we have

$$d_{\nu}(W_{\mathfrak{g}}^{r}(\mathbb{R}^{n}), L_{\mathfrak{g}}(\mathbb{R}^{n}), \varphi(\cdot)) \leqslant c_{1} \nu^{-(1/n)(r-\sum_{j=1}^{n} (1/p_{j}-1/q_{j}))},$$

that is, $d_{\nu}(W_{\mathbb{P}}^{r}(\mathbb{R}^{n}), L_{\mathbb{q}}(\mathbb{R}^{n}), \varphi(\cdot)) < \infty$ and, in addition, the required upper bound is obtained.

Let $\liminf_{a\to\infty} (a^n/\varphi(a)) > 0$. Then the required lower bound follows from (3.8). Theorem 1.1 is proved.

3.2. Proof of Theorem 1.2. The upper bound. Let $\rho > 0$, $\rho B\mathbb{R}^n := \{t = (t_1, ..., t_n) \in \mathbb{R}^n \mid t_1^2 + \cdots + t_n^2 \leq \rho^2\}$ and F be the Fourier transform in $L_2(\mathbb{R}^n)$. Denote by $\mathscr{G}_{\rho}(\mathbb{R}^n)$ the set of functions in $L_2(\mathbb{R}^n)$ whose Fourier transform is contained in $\rho B\mathbb{R}^n$. Then $\mathscr{G}_{\rho}(\mathbb{R}^n) \in \operatorname{Lin}_c(L_2(\mathbb{R}^n))$ and

$$\overline{\dim}(\mathscr{G}_o(\mathbb{R}^n), L_2(\mathbb{R}^n)) = V_n(\rho)/(2\pi)^n, \tag{3.10}$$

where $V_n(\rho) := \pi^{n/2} \rho^n / \Gamma(n/2 + 1)$ is the volume of $\rho B \mathbb{R}^n$.

This assertion follows from [2], where the more general formula was proved.

By T_{ρ} denote the map in $L_2(\mathbb{R}^n)$ defined by $FT_{\rho}x(\cdot) := X_{\rho}Fx(\cdot)$, where $X_{\rho}(\cdot)$ is the characteristic function of $\rho B\mathbb{R}^n$. It is not hard to check that T_{ρ} is a continuous linear operator in $L_2(\mathbb{R}^n)$.

Let $x(\cdot) \in B\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n})$. By Plancherel's theorem and the definition of $\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n})$, one has

$$||x(\cdot) - T_{\rho}x(\cdot)||_{L_{2}(\mathbb{R}^{n})}^{2} = \frac{1}{(2\pi)^{n}} ||Fx(\cdot) - FT_{\rho}x(\cdot)||_{L_{2}(\mathbb{R}^{n})}^{2}$$

$$= \frac{1}{(2\pi)^{n}} \int_{|\sigma| \geq \rho} |Fx(\sigma)|^{2} d\sigma$$

$$= \frac{1}{(2\pi)^{n}} \int_{|\sigma| \geq \rho} (1 + |\sigma|^{2})^{-\alpha} (1 + |\sigma|^{2})^{\alpha} |Fx(\sigma)|^{2} d\sigma$$

$$\leq \frac{(1 + \rho^{2})^{-\alpha}}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} |(1 + |\sigma|^{2})^{\alpha/2} |Fx(\sigma)|^{2} d\sigma$$

$$= \frac{(1 + \rho^{2})^{-\alpha}}{(2\pi)^{n}} ||FI_{\alpha}x(\cdot)||_{L_{2}(\mathbb{R}^{n})}^{2}$$

$$= (1 + \rho^{2})^{-\alpha} ||I_{\alpha}x(\cdot)||_{L_{2}(\mathbb{R}^{n})}^{2}$$

$$= (1 + \rho^{2})^{-\alpha} ||x(\cdot)||_{L_{2}(\mathbb{R}^{n})}^{2} \leq (1 + \rho^{2})^{-\alpha}. \tag{3.11}$$

Evidently, Im $T_{\rho} \subset \mathscr{G}_{\rho}(\mathbb{R}^n)$ for any $\rho > 0$. Let $\hat{\rho} = 2\sqrt{\pi}(\Gamma(n/2) + 1)\nu)^{1/n}$. Then $V_n(\hat{\rho})/(2\pi)^n = \nu$. Hence, by (3.10), $\overline{\dim}(\operatorname{Im} T_{\hat{\rho}}, L_2(\mathbb{R}^n)) \leq \nu$. So it follows from this and (3.11) that

$$\begin{split} \bar{d}_{v}(B\mathscr{H}_{2}^{\alpha}(\mathbb{R}^{n}), L_{2}(\mathbb{R}^{n})) &\leq d(B\mathscr{H}_{2}^{\alpha}(\mathbb{R}^{n}), \operatorname{Im} T_{\hat{\rho}}, L_{2}(\mathbb{R}^{n})) \\ &\leq \sup_{x(\cdot) \in B\mathscr{H}_{2}^{\alpha}(\mathbb{R}^{n})} \|x(\cdot) - T_{\hat{\rho}}x(\cdot)\|_{L_{2}(\mathbb{R}^{n})} \\ &\leq \left(1 + 4\pi \left(\Gamma\left(\frac{n}{2} + 1\right)v\right)^{2/n}\right)^{-\alpha/2}. \end{split}$$

The lower bound. Let $\rho > 0$ be such that $V_n(\rho)/(2\pi)^n > v$. It is obvious that there exist a positive integer N, sets $\xi_s + \Delta_{\sigma} \subset R^n$, s = 1, ..., N, where $\xi_s \in \mathbb{R}^n$, s = 1, ..., N, $\sigma > 0$, and $\Delta_{\sigma} := \{t = (t_1, ..., t_n) \in \mathbb{R}^n \mid |t_i| \le \sigma$, $i = 1, ..., n\}$ so that $\operatorname{int}(\xi_i + \Delta_{\sigma}) \cap \operatorname{int}(\xi_j + \Delta_{\sigma}) = \emptyset$, $i \ne j$, $\bigcup_{s=1}^N (\xi_s + \Delta_{\sigma}) \subset \rho B\mathbb{R}^n$ and $\operatorname{mes}(\bigcup_{s=1}^N (\xi_s + \Delta_{\sigma}))/(2\pi)^n = N(2\sigma)^n/(2\pi)^n > v$.

Choose $\mu_1 \in (0, \sigma)$ such that $N(2(\sigma - \mu_1))^n/(2\pi)^n > v$ and let $0 < \mu < \mu_1 < \sigma$ and $k = (k_1, ..., k_n) \in \mathbb{Z}^n$. Consider the function

$$\varphi_{k,\sigma}(t_1,...,t_n) = \prod_{j=1}^n \frac{\sin(\sigma-\mu)(t_j-k_j\pi/(\sigma-\mu))\sin\mu(t_j-k_j\pi/(\sigma-\mu))}{\mu(\sigma-\mu)(t_j-k_j\pi/(\sigma-\mu))^2}.$$

It is easy to verify that $\varphi_{k,\sigma}(\cdot) \in \mathcal{B}_{\bar{\sigma},2}(\mathbb{R}^n)$, where $\bar{\sigma} = (\sigma, ..., \sigma)$. Then, by the Paley-Wiener theorem, $F\varphi_{k,\sigma}(t) = 0$ a.e. on $\mathbb{R}^n \setminus \Delta_{\sigma}$.

Let a > 0. Set

$$Q(a) := \operatorname{span} \{ \varphi_{k, \sigma}(t) e^{i\xi_s t} \mid |k_j| \\ \leq [a(\sigma - \mu_1)/\pi], j = 1, ..., n, s = 1, ..., N \}.$$

If $x(\cdot) \in Q(a)$ we see that Fx(t) = 0 a.e. on $\mathbb{R}^n \setminus (\bigcup_{s=1}^n (\xi_s + \Delta_{\sigma}))$. In particular, $Q(a) \subset \mathcal{G}_a(\mathbb{R}^n)$.

Next, there is an $a_0 > 0$ such that for each $a \ge a_0$ and any $x(\cdot) \in Q(a)$ the inequality

$$||x(\cdot)||_{L_2(\mathbb{R}^n)} \le \eta(a) ||x(\cdot)||_{L_2([-a, a]^n)}$$
 (3.12)

holds true, where $\eta(a) > 0$ and $\eta(a) \to 1$ as $a \to \infty$.

For n = 1, (3.12) was proved in [7]. The argument in the general case is similar.

We now show that

$$\bar{d}_{\nu}(\mathscr{G}_{\rho}(\mathbb{R}^n) \cap BL_2(\mathbb{R}^n), L_2(\mathbb{R}^n)) \geqslant 1. \tag{3.13}$$

Let $L \in \operatorname{Lin}_{\operatorname{c}}(L_2(\mathbb{R}^n))$, $\overline{\dim}(L, L_2(\mathbb{R}^n)) \leq v$, $a \geq a_0$, S(a) be the restriction of Q(a) to $[-a, a]^n$, and $x_a(\cdot) \in S(a) \cap (\eta(a))^{-1} BL_2([-a, a]^n)$. Because $x_a(\cdot)$ is an analytic function, there is a unique function $x(\cdot) \in Q(a)$ such that $x(\cdot)|_{[-a, a]^n} = x_a(\cdot)$. Hence, by (3.12), $||x(\cdot)||_{L_2(\mathbb{R}^n)} \leq 1$, that is, $x(\cdot) \in \mathscr{G}_{\rho}(\mathbb{R}^n) \cap BL_2(\mathbb{R}^n)$.

By an argument similar to the proof of Theorem 1.1, we have (see (3.3))

$$(1+\varepsilon) d(\mathscr{G}_{\rho}(\mathbb{R}^n) \cap BL_2(\mathbb{R}^n), L, L_2(\mathbb{R}^n))$$

$$\geq d(x_a(\cdot), M(a, \varepsilon), L_2([-a, a]^n)) - \varepsilon, \tag{3.14}$$

where $\varepsilon > 0$, $M(a, \varepsilon)$ is a subspace of $L_2([-a, a]^n)$, and dim $M(a, \varepsilon) \le K_{\varepsilon}(a, L, L_2(\mathbb{R}^n))$.

By taking the supremum over such $x_a(\cdot)$, we obtain

$$(1+\varepsilon) d(\mathscr{G}_{\rho}(\mathbb{R}^n) \cap BL_2(\mathbb{R}^n), L, L_2(\mathbb{R}^n))$$

$$\geq (\eta(a))^{-1} d(S(a) \cap BL_2([-a, a]^n), M(a, \varepsilon), L_2([-a, a]^n)) - \varepsilon. \quad (3.15)$$

It is clear that dim $S(a) = \dim Q(a) = N(2[a(\sigma - \mu_1)/\pi] + 1)^n$. By assumption $\lim_{a \to \infty} (\dim S(a)/(2a)^n) = N(2(\sigma - \mu_1))^n/(2\pi)^n =: v_1 > v$. Let $\delta > 0$ satisfy $v_1 - \delta > v + \delta$ and $\{a_s\}_{s \in \mathbb{N}}$ be a sequence for which

$$\lim_{\alpha\to\infty}\inf\frac{K_{\varepsilon}(a,L,L_{2}(\mathbb{R}^{n}))}{(2a)^{n}}=\lim_{s\to\infty}\frac{K_{\varepsilon}(a_{s},L,L_{2}(\mathbb{R}^{n}))}{(2a_{s})^{n}}.$$

Then there exists an integer S_0 such that $K_{\varepsilon}(a_s, L, L_2(\mathbb{R}^n)) \leq (v + \delta)(2a_s)^n$ and dim $S(a_s) \geq (v_1 - \delta)(2a_s)^n$ for all $s \geq s_0$. That is,

$$\dim M(a_s, \varepsilon) \leq K_{\varepsilon}(a_s, L, L_2(\mathbb{R}^n)) < \dim S(a_s).$$

Hence, by Tikhomirov's theorem (let X be a normed linear space, $L \in \text{Lin}(X)$, and dim L = n + 1; then $d_n(L \cap BX, X) = 1$), we have

$$d(S(a_s) \cap BL_2([-a_s, a_s]^n), M(a_s, \varepsilon), L_2([-a_s, a_s]^n)) \ge 1$$

for all $s \ge s_0$.

From this and (3.15) and since $\eta(a) \to 1$ as $a \to \infty$, we obtain (3.13). Next, the Bernstein-type inequality

$$||x(\cdot)||_{\mathscr{H}_{3}^{2}(\mathbb{R}^{n})} \leq (1+\rho^{2})^{\alpha/2} ||x(\cdot)||_{L_{2}(\mathbb{R}^{n})}$$
(3.16)

holds true for all $x(\cdot) \in \mathscr{G}_{\rho}(\mathbb{R}^n)$.

Indeed, if $x(\cdot) \in \mathcal{G}_n(\mathbb{R}^n)$, then, by Plancherel's theorem,

$$\|x(\cdot)\|_{\mathscr{H}^{2}_{2}(\mathbb{R}^{n})}^{2} = \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} ((1+|\lambda|^{2})^{\alpha/2} |Fx(\lambda)|)^{2} d\lambda$$

$$= \frac{1}{(2\pi)^{n}} \int_{|\lambda| \leq \rho} (1+|\lambda|^{2})^{\alpha} |Fx(\lambda)|^{2} d\lambda$$

$$\leq \frac{1}{(2\pi)^{n}} (1+\rho^{2})^{\alpha} \int_{\mathbb{R}^{n}} |Fx(\lambda)|^{2} d\lambda$$

$$= (1+\rho^{2})^{\alpha} \|x(\cdot)\|_{L_{2}(\mathbb{R}^{n})}^{2}.$$

Inequality (3.16) means that $\mathscr{G}_{\rho}(\mathbb{R}^n) \cap (1+\rho^2)^{-\alpha/2} BL_2(\mathbb{R}^n) \subset B\mathscr{H}_2^{\alpha}(\mathbb{R}^n)$. It follows from this and (3.13) that

$$\bar{d}_{\nu}(B\mathscr{H}_{2}^{\alpha}(\mathbb{R}^{n}), L_{2}(\mathbb{R}^{n})) \geqslant (1+\rho^{2})^{-\alpha/2} \bar{d}_{\nu}(\mathscr{G}_{\rho}(\mathbb{R}^{n}) \cap BL_{2}(\mathbb{R}^{n}), L_{2}(\mathbb{R}^{n}))$$
$$\geqslant (1+\rho^{2})^{-\alpha/2}.$$

Since this is true of every $\rho > 0$ such that $V_n(\rho)/(2\pi)^n > \nu$ we deduce that

$$\begin{split} \bar{d}_{v}(B\mathcal{H}_{2}^{\alpha}(\mathbb{R}^{n}), \, L_{2}(\mathbb{R}^{n})) &\geqslant (1+\hat{\rho}^{2})^{-\alpha/2} \\ &= \left(1+4\pi\left(\Gamma\left(\frac{n}{2}+1\right)v\right)^{2/n}\right)^{-\alpha/2}. \end{split}$$

Theorem 1.2 is proved.

REFERENCES

- 1. A. Benedec and R. Panzone, The spaces L^p with mixed norm, Duke Math. J. 28, No. 3 (1961), 301-324.
- Din Dung, Average ε-dimension of functional class B_{G,p}, Mat. Zametki 28, No. 5 (1980), 727-736.
- P. I. LIZORKIN, Fourier multipliers and the estimations of convolutions in spaces with mixed norm. Applications, Izv. Acad. Nauk SSSR Ser. Mat. 34, No. 1 (1970), 218-247.
- G. G. MAGARIL-IL'YAEV, Bernstein-Nikolskii type inequalities and approximation of generalized Sobolev classes, Trudy Mat. Inst. Acad. Nauk SSSR 173 (1986), 190-204.
- G. G. MAGARIL-IL YAEV, φ-Average widths of classes of functions defined on the real line, Uspekhi Mat. Nauk 45, No. 2 (1990), 211-212.
- G. G. MAGARIL-IL'YAEV, Average dimension and widths of classes of functions defined on the real line, Dokl. Acad. Nauk SSSR 318, No. 1 (1991), 35–38.
- G. G. MAGARIL-IL'YAEV, Average dimension, widths and optimal recovery of Sobolev classes on the whole line, Mat. Sb. 182, No. 11 (1991), 1635–1656.
- 8. S. M. Nikolskii, "Approximation of Functions of Several Variables and Embedding Theorems," "Nauka," Moscow, 1977.
- E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, NJ, 1970.
- V. M. TIKHOMIROV, On approximative characteristics of smooth functions of several variables, in "Trudy Conference on Differential Equations and Computational Mathematics, Novosibirsk, 1978." "Nauka" SO, Novosibirsk, 1980.
- V. M. Tikhomirov, "Approximation Theory," Itogi nauki i tekhn., Vol. 14, "Nauka," Moscow, 1987.
- 12. G. H. HARDY, J. E. LITTLEWOOD, AND G. PÓLYA "Inequalities," Cambridge Univ. Press, Cambridge, 1934.